The Adaptative Process of Training - Opening the Black Box
Keywords:
training adaptation, exercise molecular physiology, epistemology of biologyAbstract
The General Adaptation Syndrome (GAS) has been and remains being the explanatory model used by the vast majority of sport physiologists and coaches to explain the adaptive process of training. While this paradigm can help us to understand simple phenomena such as the increase of muscular glycogen stores after a training program, it is unable to account for more complex training adaptations. In order to support this claim, first we analize the biological meaning of the adaptation and explanation concepts. Then we present what should be, in our opinion, the real explanation of the biological process of training adaptation. We conclude with some thoughts about the possibilities and challenges that lie in the recent entry of Exercise Physiology in the molecular era.References
AGUIARI, Paola; LEO, Sara; ZAVAN, Barbara. et al. High glucose induces adipogenic differentiation of muscle-derived stem cells. PNAS, v. 105, n. 4, p. 1226-1231, 2008.
AYALA, Francisco. Teleología y adaptación en la evolución biológica. In: MARTÍNEZ, Sergio; BARAHONA, Ana (Ed.). Historia y explicación en biología. México: Fondo de Cultura Económica, 1998.
BACHELARD, Gaston. The new scientific spirit. Beacon Press, 1985. 190 p.
CAPONI, Gustavo. Explicación seleccional y explicación funcional: la teleología en la biología contemporánea. Episteme, Porto Alegre, n. 14, p. 57-88, 2002.
DOBZHANSKY, Theodosius. Nothing in biology makes sense except in the light of evolution. American Biology Teacher, Baltimore, n. 35, p. 125-129, 1973.
HARDIE, Grahame. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Medicine and Science in Sports and Exercise, v. 36, n. 1, p. 28-34, 2004.
HUDSON, Emma et al. A novel domain in AMPactivated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology, v. 13, n. 10, p. 861- 866, 2003.
JACOB, François. La lógica de lo viviente. Barcelona: Laia, 1999. 320 p.
KUHN, Thomas. Estructura de las revoluciones científicas. México: Fondo de Cultura Económica, 1971. 360 p.
MATURANA, Humberto; VARELA, Francisco. De máquinas y seres vivos. Santiago de Chile: Edtorial Universitaria, 1997. 136 p.
MAYNARD SMITH, John. Los problemas de la biología. Madrid: Cátedra, 1987. 190 p.
MAYR, Ernst. Toward a new philosophy of biology: observations of an evolutionist. Harvard University Press, 1989. 575 p.
MAYR, Ernst. por qué es única la biología: consideraciones sobre la autonomía de una disciplina científica. Madrid: Katz Editores, 2006. 280 p.
MOOREN, Frank; VÖLKER, Klaus. Molecular and cellular Exercise physiology. Human Kinetics, 2004. 464 p.
POPPER, Karl. La reducción científica y la incompletad esencial de toda ciencia. In: AYALA, Francisco; DOBZHANSKY, Theodosius (Ed.). Estudios sobre la filosofía de la biología. Barcelona: Ariel, 1983.
SELYE, Hans. Stress and disese. Science, v. 122, n. 3171, p. 625-631, 1955.
SELYE, Hans. The stress of life. New York: McGrawHill, 1976. 515 p.
SELYE, Hans. A syndrome produced by diverse nocuous agents. The Journal of Neuropsychiatry and Clinical Neurosciences, n. 10, p. 230-231, 1998.
SMITH, George; GUNNEL, David; HOLLY, Jeff. Cancer and insulin-like growth factor-I (editorial). British Medical Journal, v. 321, n. 7265, p. 847-848, 2000.
SPURWAY, Neil; WACKERHAGE, Henning. Genetics and Molecular biology of Muscle Adaptation. Churchill Livingstone Elsevier, 2006. 273 p.
YANG, Nang et al. ACTN3 genotype is associated with human elite atlhetic performance. The American Journal of Human Genetics, v. 73, n. 3, p. 627- 631, 2003.
Downloads
Published
How to Cite
Issue
Section
License